

Interaction of Alkyl Ammonium Derivatives with Red Cells: Hemolysis and Sodium Pump Inhibition Studies

R.A. Klein and J.C. Ellory

Medical Research Council, Molteno Institute, and The Physiological Laboratory, University of Cambridge, Cambridge, England

Summary. Members of four homologous series of tetra-alkyl ammonium bromides ($R_3N(CH_2)_{n-1}^+ \cdot CH_3Br^-$ where $R=H, CH_3$ or C_2H_5 and $R'NH_3^+Br^-$ where R' represents the isomeric butyl series) have been synthesized and tested as sodium pump inhibitors, measured as ouabain-sensitive K^+ influx, and as hemolytic agents on human red cells.

Potency for both effects is presented graphically, plotting the logarithm of the concentration for half maximal effect against alkyl chain length. Both hemolysis and pump inhibition studies yielded a biphasic response consisting of two good straight lines, with effectiveness increasing up to C10-12 and then remaining constant up to C20.

For hemolysis the alkyl ammonium series was most effective. The calculated free-energy change per methylene group was the same for three series of compounds, but the free-energy contribution from the headgroup was lower for the ammonium series.

In contrast, although pump inhibition studies also yielded simple biphasic plots, inhibition occurred at 3- to 50-fold lower concentrations and there were significant differences between the three series, both in the free-energy changes per methylene group and in the headgroup contributions.

We have analyzed these results thermodynamically to take account of hydrophobic interactions and the conformation of the alkyl chains.

Tetra-alkyl ammonium cations (TAA) have been used as K^+ -like inhibitors in several biological systems, including the K^+ channel in squid axons (Tasaki & Hagiwara, 1957; Armstrong & Binstock, 1965) and the sodium pump in red cells (Sachs & Conrad, 1968; Kropp & Sachs, 1977). Although the simple

tetraethyl ammonium cation (TEA) was originally used, longer chain TAA derivatives were found to be more effective (Armstrong, 1971; Armstrong & Hille, 1972; Rojas & Rudy, 1976).

TAA compounds can be considered amphipathic, since they contain both a long alkyl side chain and a charged quaternary nitrogen head group. For the sodium pump, there is good evidence that these compounds behave as competitive reversible inhibitors with respect to K^+ (Kropp & Sachs, 1977), although for the long alkyl chain derivatives other interactions may be present (Ellory, Simonsen & Klein, 1979). Thus, in an earlier paper (Ellory et al., 1979) we investigated the inhibitory effect of two series of TAA derivatives on the sodium pump. First, using the triethyl-alkyl ammonium series $Et_3N(CH_2)_{n-1}^+CH_3Br^-$ for $n=2-20$, we showed an increasing inhibitory potency up to C12, beyond which point there was no further enhancement as n was increased. Secondly, we showed an apparently complex relationship between inhibitory effectiveness and headgroup size for the homologous series $CH_3 \cdot (CH_2)_7 \cdot NR_3^+Br^-$ where R varied from H to C_5H_{11} .

Because of their amphipathic character, long-chain TAA derivatives can have a detergent action and cause hemolysis. This effect is likely to represent a less specific membrane interaction than Na^+ -pump inhibition and occurs at much higher TAA concentrations. In the present paper we measure the concentration effective for half-maximal hemolysis and for Na^+ -pump inhibition, produced by members of four homologous series of TAA derivatives. The specific series considered were $R=H, CH_3, C_2H_5$ for $R_3N(CH_2)_{n-1}^+CH_3Br^-$ and $R'NH_3^+Br^-$ where R' represents the isomeric butyl series. The results from both hemolysis and pump inhibition experiments are

analyzed from a thermodynamic viewpoint, giving particular consideration to the nature of the partitioning of the inhibitor as it transfers from an aqueous environment to a membrane environment.

Materials and Methods

Chemicals were purchased from various commercial sources, including Aldrich Chemical Co., Eastman Kodak, Koch Light, British Drug Houses and Sigma Chemical Co.

Blood was drawn from males aged 25–40 years into heparinized saline and used within 24 hr.

Long Chain Alkyl Quaternary Ammonium Bromides

Quaternary ammonium bromides or iodides were prepared by refluxing the appropriate alkyl halide with a slight molar excess of trialkylamine in either absolute methanol or acetone for 3–4 hr (Finkelstein, Petersen & Ross, 1959; Grovenstein et al., 1959). Excess solvent and tertiary amine were removed by rotary evaporation, and a large excess of cold diethyl ether was added to precipitate the quaternary ammonium derivative, which was filtered and thoroughly washed with ether. If necessary, precipitation from a small volume of methanol with ether was repeated before the product was recrystallized from mixtures of ethyl acetate, ether, and ethanol and then dried under vacuum over phosphorus pentoxide. Although most alkyl bromides were available from commercial sources, octadecanyl and eicosanyl bromides were prepared from the corresponding alcohols (octadecan-1-ol and eicosan-1-ol), using bromine and red phosphorus at 250°C as described by Vogel (1959; 1978), followed by purification using distillation under reduced pressure.

Long-Chain Alkyl Ammonium Bromides

The long-chain alkyl ammonium bromides were prepared by adding slightly in excess of the theoretical amount (105%) of 48% hydrogen bromide to the well-cooled alkylamine kept on ice with efficient mixing. The concentrated aqueous solution was then shell-frozen and freeze dried. The crude alkyl ammonium bromides were then recrystallized two to three times from appropriate mixtures of ethanol, ethyl acetate and diethyl ether, and then dried *in vacuo* over phosphorus pentoxide.

Tetradecylamine, hexadecylamine and octadecylamine were obtained from the Aldrich Chemical Company. These materials were of technical grade purity (75–90%) and were, therefore, further purified before use to remove homologous primary amines and any secondary or tertiary amines present as impurities. Purification was achieved by fractional vacuum distillation using a heated 50-cm Vigreux column with a high reflux to distillation ratio. The distilled alkylamines were very pale yellow to colorless liquids which solidified on cooling with boiling points under reduced pressure as follows:

tetradecylamine 146–152°C/4–5 mm Hg
(liter · 291°C/760 mm; 162°C/15 mm).

hexadecylamine 166–169°C/4–5 mm Hg
(liter · 322°C/760 mm; 144°C/2 mm).

octadecylamine 182–184°C/2–3 mm Hg
(liter · 232°C/32 mm).

Active K⁺ and Rb⁺ Uptake

Washed red cells were incubated at 2% hematocrit in 1 ml of a solution containing (in mM): 150, choline Cl; 1, NaCl; 5, glucose; 10, tris; pH 7.5 at 37°C and the appropriate TAA inhibitor. A parallel series, with 0.1 mM ouabain added, was also included. Following 5 min preincubation at 37°C, the reaction was started by adding KCl (containing tracer amounts of ⁴²K⁺ or ⁸⁶Rb⁺) solution to give a final K⁺ concentration of 0.2 mM. After 30 min the samples were cooled in an ice bath (5 min) and the cells washed by centrifugation in isotonic (107 mM) MgCl₂ solution containing 10 mM tris, pH 7.6 at 4°C, using an Eppendorf microcentrifuge. The final pellet was lysed in 0.1% Triton X-100 solution (0.5 ml) and trichloroacetic acid added to a final concentration of 5%. The protein precipitate was removed by centrifugation and the supernatant assayed for Cerenkov radiation in a β -scintillation spectrometer. Samples of the original supernatant were counted as standard and assayed for K by flame photometry to guard against hemolytic effects on external K concentration. Samples were run in duplicate (and \pm ouabain) for 5 inhibitor concentrations and a control. From preliminary experiments, TAA concentrations were adjusted to give 15–75% inhibition. The calculated values for ouabain-sensitive K⁺ influx were used in Dixon plots ($1/v$ vs. I) and the concentration for half-maximal pump inhibition (I_{50}) was determined (Ellory et al., 1979). Each TAA derivative was tested at least twice, and usually 3 times.

Hemolysis

Washed red cells were incubated under identical conditions to the flux tubes in the absence of isotope and at higher TAA concentrations. After 30 min at 37°C the samples were centrifuged and aliquots of the supernatant assayed spectrophotometrically for Hb at 541 nm and compared with cell suspensions lysed with Triton X-100. Again, preliminary experiments established the appropriate range over which to assay the TAA derivatives.

Results

Hemolysis

Figure 1a–c presents data for the concentration of TAA derivative giving 50% hemolysis after 30 min at 37°C (2% haematocrit) for members of the three series, alkylammonium, alkyltrimethylammonium and alkyltriethylammonium bromides. For the lower members of the series, very high concentrations were necessary to produce lysis, so data are only presented for $n_c > 6$ ($RNH_3^+Br^-$) or $n_c > 7$ (RTMA⁺, RTEA⁺Br⁻). All three types of compound produced clearly biphasic plots for $\log C_{50}$ vs. chain length. The TMA and TEA derivatives gave virtually identical results, with the data from C_8 – C_{14} fitting well for a straight line of negative slope, values for compounds of chain length $n_c > 14$ being parallel to the x axis. The RNH_3^+ derivatives proved more effective hemolytic agents than the TMA and TEA series. In general, the data for RNH_3^+ compounds were similar to the other two series, but the initial part of the curve was

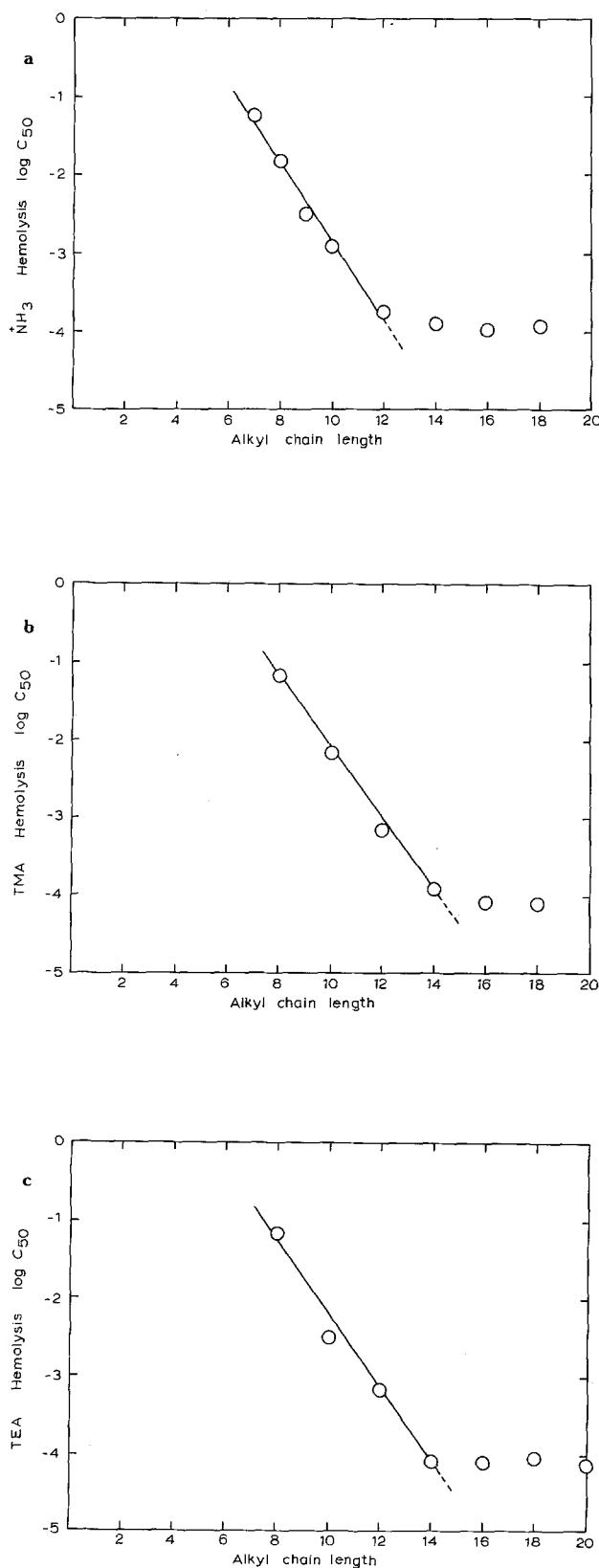


Fig. 1. Logarithm of the 50% hemolytic concentration *vs.* carbon atoms in the alkyl chain for (a) *n*-alkylammonium bromides, (b) *n*-alkyl trimethylammonium bromides and (c) *n*-alkyl triethylammonium bromides.

shifted to the left so that the curve breaks around C_{12} rather than C_{14} . Linear regression analysis of the hemolysis data for the straight-line portion of the curves below C_{12-14} gave the following equations:

ammonium

$$\log C_{50} = -0.501 (\pm 0.034) n_c + 2.17 (\pm 0.13)$$

trimethylammonium

$$\log C_{50} = -0.459 (\pm 0.024) n_c + 2.45 (\pm 0.11)$$

triethylammonium

$$\log C_{50} = -0.473 (\pm 0.047) n_c + 2.50 (\pm 0.21)$$

where n_c is the number of carbon atoms in the alkyl chain.

The data are consistent in that each compound was tested 2 or 3 times and gave the same C_{50} value. The concentrations for significant hemolysis are between 3- and 50-fold greater than the values at which the K⁺ influx was significantly inhibited (see below).

K^+ -Influx Inhibition

Figure 2a-c presents data for the concentration of TAA derivatives to produce 50% inhibition of the ouabain-sensitive K⁺ influx in human red cells in choline medium. As for the hemolysis results, $\log C_{50}$ is plotted against chain length, n_c , for members of the three series RNH_3^+ , $RTMA^+$ and $RTEA^+$. Here, inhibition occurs at relatively low concentrations compared with hemolysis, so it is possible to obtain results for even-numbered members of the $RTEA^+$ series from C_2-C_{20} , C_4-C_{18} ($RTMA^+$) and C_2-C_{18} (RNH_3^+ and including C_7 and C_9). Again, for all three series the curves clearly consist of two components, one of which having a negative slope and covering the region to $C_{11}-C_{13}$, whilst beyond this chain length the inhibitory concentration remains approximately constant, settling around a C_{50} of 15-40 μM . For the earlier component, linear regression analysis of the K⁺ influx inhibition data gave the following equations:

ammonium

$$\log C_{50} = -0.352 (\pm 0.012) n_c - 0.808 (\pm 0.086)$$

trimethylammonium

$$\log C_{50} = -0.402 (\pm 0.022) n_c + 1.03 (\pm 0.18)$$

triethylammonium

$$\log C_{50} = -0.294 (\pm 0.016) n_c - 0.72 \pm 0.13$$

For pump inhibition, in contrast to hemolysis, there are clear differences between the behavior of the three series. Alkylammonium compounds are still the most

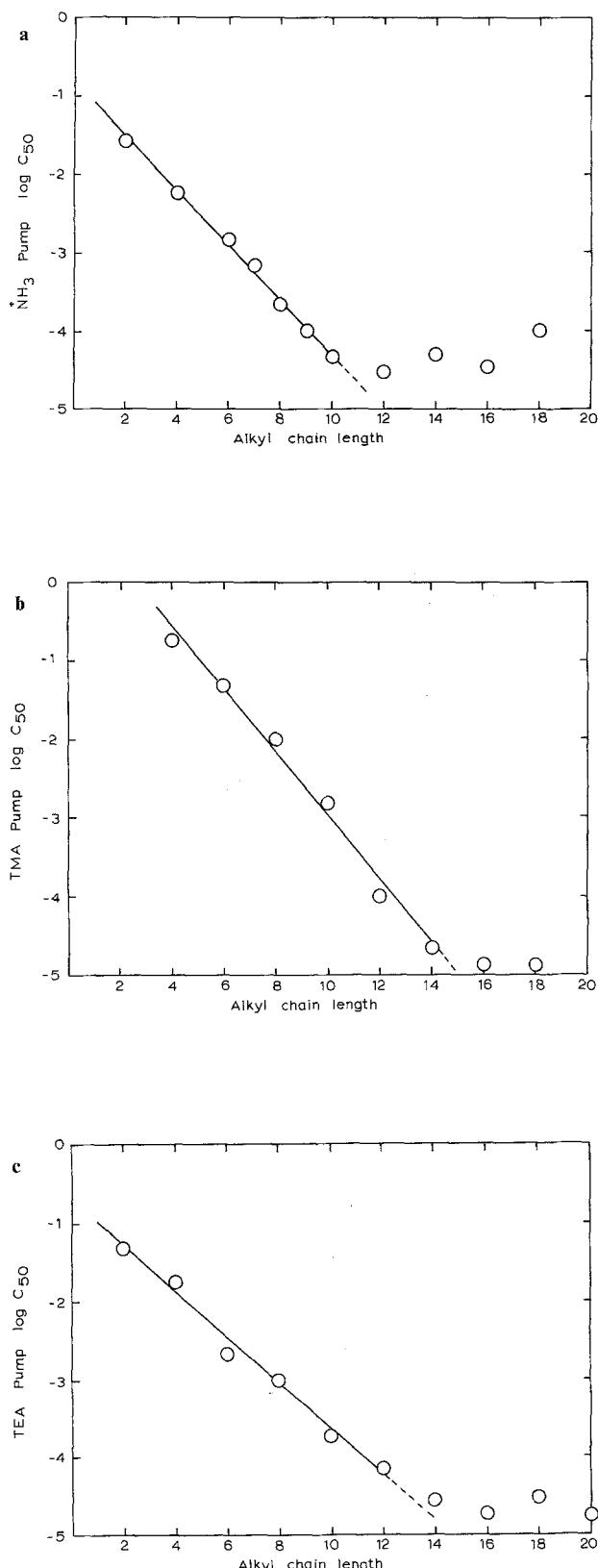


Fig. 2. Logarithm of the 50% inhibitory concentration for the sodium pump *vs.* carbon atoms in the alkyl chain for (a) *n*-alkyl ammonium bromides, (b) *n*-alkyl trimethylammonium bromides, and (c) *n*-alkyl triethylammonium bromides.

Table 1. Inhibition of ouabain-sensitive K⁺ influx by isomeric butylammonium bromides

	50% inhibitory conc. (mm)
<i>n</i> -butylammonium bromide	6.0
<i>iso</i> -butylammonium bromide	8.8
<i>sec</i> -butylammonium bromide	20.7
<i>tert</i> -butylammonium bromide	49

effective and show a negative slope comparable to the TMA compounds for the initial part of the curve. The TEA series, although acting almost as effectively as the NH_3^+ compounds at C_2 , showed a shallower negative slope, with the C_{10} compound being markedly less inhibitory than $C_2\text{NH}_3^+$. Finally, for the TMA derivatives the slope of the initial component was almost comparable with the RNH_3^+ series, although at every concentration these derivatives are less effective inhibitors than the alkylammonium compounds.

Butyl Ammonium Bromide Isomers

The four isomeric members of the series $\text{C}_4\text{H}_9\text{NH}_3^+\text{Br}$ were tested for their inhibitory potency on ouabain-sensitive K⁺ influx in red cells. The results are summarized in Table 1. It can be seen that the straight-chain *n*-butylammonium cation is the most effective inhibitor, with increased branching leading to a decrease in inhibitory potency. The data are also compared graphically with the relative retention times for the butanol series by GLC on squalene or dodecanol (Fig. 3a). There is a correlation between the relative retention time and effective inhibition by these compounds such that the straight-chain butylammonium bromide, which is retained for the longest period on the GLC column, is also the most effective inhibitor of membrane transport.

Discussion

Both the hemolysis data and the results for inhibition of the sodium pump by the various alkyl ammonium compounds may be analyzed thermodynamically. In our analysis we have made the tacit assumptions that the charged headgroup is located in the predominantly hydrophilic interfacial region, and that the alkyl chain extends from this region into the hydrophobic core of the membrane.

Following the solvophobic theory of solute-solvent interactions as advanced by Sinanoglu (1968)

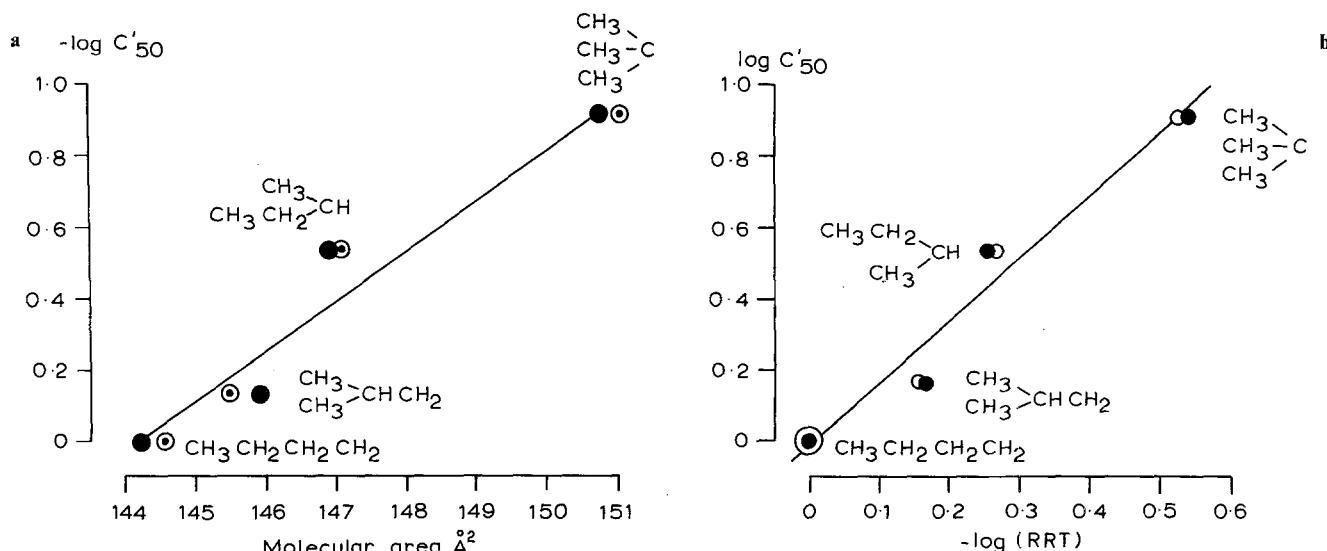


Fig. 3. (a): Estimate of alkyl chain dimension perpendicular to interface vs. the logarithm of the relative inhibitory concentration: n.b. where two conformational extremes are possible, both these are shown (b): Logarithm of the relative retention time for the GLC of isomeric butanols on dodecan-1-ol (○) or squalene (●) at 80°C vs. the logarithm of the relative inhibitory concentration.

and extended recently by Horvath and coworkers to a consideration of liquid chromatographic systems (Sinanoglu & Abdulnur, 1965; Halicioglu & Sinanoglu, 1969; Horvath, Melander & Molnar, 1977; Horvath & Melander, 1978), the free energy of interaction for a solute in solvent I can be written

$$\Delta F^I = \Delta F_{\text{CH}_2}^I + \Delta F_{\text{headgroup}}^I \\ = \Delta F_{\text{cav}}^I + \Delta F_{\text{vdw}}^I + \Delta F_{\text{es}}^I + \Delta F_{\text{solv}}^I + \Delta F_{\text{conf}}^I \quad (1)$$

where the terms $\Delta F_{\text{CH}_2}^I$ and $\Delta F_{\text{headgroup}}^I$ indicate the free energy of interaction for the alkyl chain methylene groups and for the charged headgroup, respectively. ΔF_{cav}^I , ΔF_{vdw}^I , ΔF_{es}^I , and ΔF_{solv}^I indicate the free energies of cavity formation, Van der Waals, electrostatic, and solvation interactions. ΔF_{conf}^I allows for conformational free-energy changes due to rotational isomerism of the alkyl chain. This expression (1) may be generalized to include the case of the transfer of a solute species from solvent I to solvent II, as arises in the transfer of a molecule from aqueous medium to the membrane or *vice versa*. Sinanoglu (1968) gives an approximate expression for the free energy of association in a solvent which ignores conformational effects

$$\Delta F_o = a - b \Delta \left(\frac{\mu_i^2}{v} \right) + c \Delta (v_i^{2/3}) \gamma_i \quad (2)$$

where the change in the inverse effective volume or solvation term, $\Delta \left(\frac{\mu_i^2}{v} \right)$, and in the effective surface area or cavity term, $\Delta (v_i^{2/3}) \gamma_i$ are the solvophobic forces driving the equilibrium. For small groups sol-

vation forces may predominate, but with larger groups the cavity term usually assumes greater significance. Horvath and Melander (1978) have indicated that the cavitation term may be the predominant factor affecting separations of hydrophobic materials by chromatography.

The linear relationship commonly observed between alkyl chain length and the logarithm of the equilibrium constant in chromatographic and other partition processes arises because of the often extremely good linear dependence of the incremental surface energy term, $\Delta (v_i^{2/3}) \gamma_i$, on alkyl chain length. Average molecular surface area has been calculated for the homologous *n*-alkylamines considered either as spheres or as cylinders, since this represents the extreme conformations possible. Calculations were made using literature values for the density of the liquid, suggested as a reasonable approximation by Moelwyn-Hughes (1947), and from molecular models using a value for the cross-sectional area of an extended hydrocarbon chain of 20.5–20.7 Å^2 (Glasstone, 1960; Davies & Rideal, 1961; Adam, 1941). Regression analysis of these calculated areas (see Fig. 4) indicated the constancy of the area increase per methylene group: 14.3 Å^2 per CH_2 as a sphere and 27.6 Å^2 as a cylinder.

Although solvophobic theory is useful in highlighting qualitative features of solute behavior (Horvath & Melander, 1977), great care must be exercised in attributing physical meaning to macroscopic concepts such as average molecular area and the formation of molecular cavities. Attempts to calculate the quantitative effect of microscopic or molecular

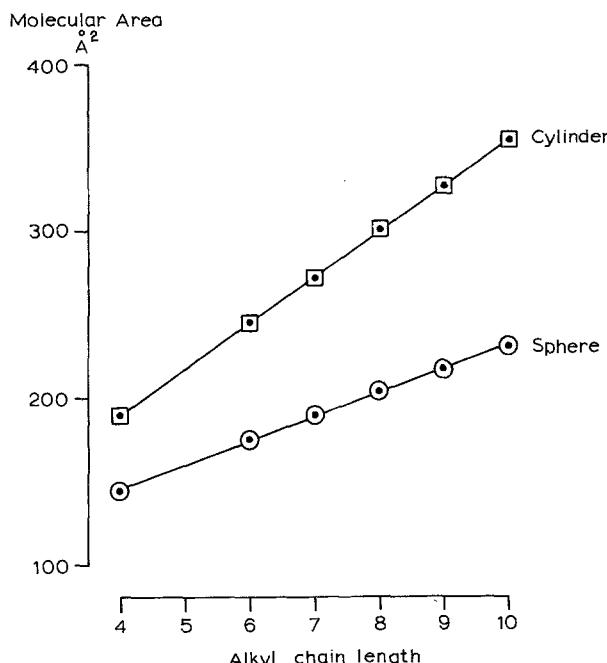


Fig. 4. Molecular surface area for the homologous *n*-alkylamines estimated from molecular models and density data as either spheres (○) or cylinders (□).

forces using macroscopic values of parameters such as surface tension or molecular area usually need correction factors for which there is little physical basis. However, as we shall show later, it is possible to use experimentally determined values of the free-energy change per methylene group in conjunction with a conformational free-energy term obtained using statistical mechanics to analyze rotational isomerism in the alkyl chains.

The data for hemolysis and for inhibition of the sodium pump both show a linear dependence of the 50% effective concentration upon chain length below $C_{12} \pm 2$. Above this region the curves become more or less horizontal and, as shown in a previous paper (Ellory et al., 1979), the kinetics of inhibition change. If one considers only that portion of the curve below C_{12} , one obtains the following free-energy terms for hemolysis by alkylammonium, trimethylammonium and triethylammonium bromides.

The thermodynamic parameters for hemolysis by the three different homologous series shown in Table 2 are probably not significantly different given experimental error. We chose hemolysis as a measure of the nonspecific hydrophobic interaction of our derivatives with the lipid of the erythrocyte membrane, and the experimental results support the hypothesis that this interaction is relatively nonspecific. On the other hand, similar thermodynamic parameters for inhibition of the sodium pump show very great differences between the homologous series, suggesting

Table 2. Free energies of hemolysis

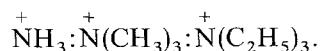

	F_{CH_2}	$F_{\text{headgroup}}$
Ammonium	$-2.98 \pm 0.20 \text{ kJ}$	$12.86 \pm 0.78 \text{ kJ}$
Trimethylammonium	$-2.72 \pm 0.14 \text{ kJ}$	$14.52 \pm 0.64 \text{ kJ}$
Triethylammonium	$-2.81 \pm 0.28 \text{ kJ}$	$14.82 \pm 1.24 \text{ kJ}$

Table 3. Free energies of K^+ -inhibition

	F_{CH_2}	$F_{\text{headgroup}}$
Ammonium	$-2.09 \pm 0.07 \text{ kJ}$	$-4.80 \pm 0.51 \text{ kJ}$
Trimethylammonium	$-2.39 \pm 0.13 \text{ kJ}$	$+6.10 \pm 1.09 \text{ kJ}$
Triethylammonium	$-1.67 \pm 0.08 \text{ kJ}$	$-4.71 \pm 0.86 \text{ kJ}$

a more specific effect (Table 3). It is also worth noting that inhibition of the sodium pump occurs at much lower concentrations than hemolysis (approximately 3- to 50-fold difference in concentration depending upon the derivative - see Figs. 1 and 2), again indicating a more specific effect for inhibition of the sodium pump.

Two features of the results in Table 3 distinguish them from those for hemolysis (Table 2). The first is that the free energy of the headgroup interaction separates the trimethylammonium derivatives from the ammonium and triethylammonium compounds, being of opposite sign. If the free energy of headgroup interaction depended on size, one might expect the order to be

On the other hand, a plausible explanation of the results might be that solvation renders the ammonium group more of an equal size with the triethylammonium group. The second feature which Table 3 highlights is that the slope or free-energy change per methylene group is significantly different for the three series of compounds. Moreover, these values for ΔF_{CH_2} are all much lower than the equivalent values for hemolysis.

In view of the implications of solvophobic theory as advanced by Sinanoglu and certain conformational terms to be discussed later, it seems to us both unreasonable and simplistic to attribute the value of this free-energy change per CH_2 group solely to the hydrophobicity of the membrane as has been done recently by Sallee (1978). This term has little quantitative meaning, and it has been argued that its use may lead to a misunderstanding of the effects involved (Hildebrand, 1979) and the basis for the interaction between hydrocarbons and water (Tanford, 1979).

The driving force for a molecule moving from the aqueous phase to the membrane hydrocarbon phase includes a cavity surface free-energy term and conformational terms. The change in the cavity term on passing from water to the membrane has been given by Horvath et al. (1977) as

$$\Delta F_{\text{cav}}^{\text{CH}_2} = N((k_j^e A_j^{\text{H}_2\text{O}} \gamma^{\text{H}_2\text{O}} (1 - W_j')) - (k_j^{e''} A_j^{\text{memb}} \gamma^{\text{memb}} (1 - W_j''))) \quad (3)$$

where N is Avogadro's number, A_j the molecular surface area of the solute, γ the solvent surface tension, and W_j and k_j^e correction terms accounting for enthalpic and entropic contributions to changing from macroscopic to microscopic dimensions. As indicated earlier, there are difficulties in applying macroscopic concepts such as interfacial surface area or surface tension to individual molecules without the use of unacceptable correction factors (Tanford, 1979).

Rather than using doubtful macroscopic numerical values for the parameters in this equation (3), it would seem more appropriate to utilize experimentally determined values of ΔF_{CH_2} for long-chain fatty acids, alcohols, or alkanes derived from data for their solubility in water. Such values take account experimentally of both the cavity surface free energy and Van der Waals free-energy terms, but do not allow for ordering of the alkyl chains as is known to occur in biological membranes. Values for n -alkanes, fatty acids, and alcohols (in kJ) are available in Tanford (1973): n -alkanes, -3.70 kJ/CH_2 ; fatty acids, -3.45 kJ/CH_2 ; alcohols, -3.44 kJ/CH_2 .

The situation in which the substituted alkylammonium compounds partition between the aqueous environment and the membrane lipid is, however, significantly different in one respect. Compared to liquid hydrocarbon, the membrane alkyl chains are considerably ordered particularly in the presence of high cholesterol concentrations as found in erythrocyte membranes (Marsh & Smith, 1973; Shimsick & McConnell, 1973; Nelson, 1967a, b). Because of this, there will be a significant conformational free-energy term related to the probability of *trans* to *gauche* interconversions in the alkyl chain as solute molecules pass from one environment to the other. One can assume that the molecules in aqueous solution are monomers with their alkyl chains in considerable rotational disorder - the concentrations involved are well below the critical micelle concentrations (Tanford, 1973). On passage into the relatively ordered hydrocarbon core, the alkyl chain will extend to give a cylinder; as indicated in Fig. 4 this would be expected to involve a considerable change in contact surface area. To calculate the

unkinking energy of the alkyl chains, we make use of the treatment of Flory (1969) for polymethylene chains, to whom reference should be made for a more detailed account.

The energy of a *gauche* rotational state relative to the *trans* state is defined as E_g with a value of $500 \text{ cal mole}^{-1}$ (2.09 kJ/mole) deduced from Raman spectra and entropic analysis of n -alkanes (Mizushima & Okazaki, 1949; Sheppard & Szasz, 1949; Person & Pimentel, 1953). The energy for a $g^\pm g^\mp$ pair in excess of the calculated energy for a $g^\pm g^\pm$ pair, which approximates the sum of the energies for the two first order interactions, is defined as E_w and has a value of approximately $2200 \text{ cal mole}^{-1}$ (9.21 kJ/mole) (Abe, Jernigan & Flory, 1966). The statistical weights are then given by

$$\sigma = \exp(-E_g/RT) = 0.4441 \quad (4)$$

$$\omega = \exp(-E_w/RT) = 0.0281 \quad (5)$$

both at 37°C .

For long chains the configurational partition function

$$Z \cong (\lambda_1^{(2)})^{n/2} \quad (6)$$

where $\lambda_1^{(2)}$ is the largest eigenvalue of the statistical weight matrix $U^{(2)}$ for a chain of n bonds

$$\lambda_{1,2}^{(2)} = \frac{1}{2} \{ (1 + 4\sigma + \sigma^2 \alpha \beta) \pm \sqrt{((1 - \sigma^2 \alpha \beta^2) + 8\sigma(1 + \sigma \alpha)(1 + \sigma \beta))} \} \quad (7)$$

where

$$\alpha = \psi_a + \omega_a \quad \beta = \psi_b + \omega_b \quad (8)$$

with $\psi_a \cong \psi_b \cong 1$ and $\omega_b \cong 0$, giving

$$\lambda_1^{(2)} = \frac{1}{2} (2.97915 + \sqrt{8.10851}) \\ = 2.91335$$

therefore

$$Z = (2.91335)^{n/2} \quad (9)$$

The free energy difference between the alkyl chains in the substantially ordered bilayer and the relatively rotationally disordered situation in the aqueous phase is

$$Z_{\text{bilayer}} = 1 \quad \Delta F = -RT \ln(Z_{\text{bilayer}}/Z_{\text{H}_2\text{O}}) \\ = +RT n/2 \ln(2.91335) \\ = 329.3 \text{ cal mole}^{-1} \\ = 1.379 \text{ kJ mole}^{-1} \quad (10)$$

This free-energy term of 1.38 kJ (mole CH_2 group) $^{-1}$ for the kinking energy of the alkyl chains reduces the

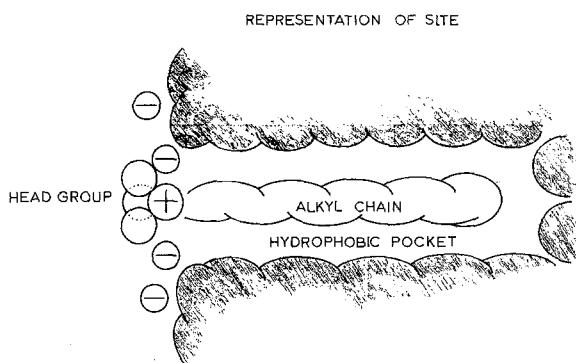


Fig. 5. Representation of the binding site for long-chain ammonium compounds in the vicinity of the sodium pump.

expected slope of the K^+ -inhibition curves (Table 3) to approximately $2.07 \text{ kJ}(\text{mole } \text{CH}_2 \text{ group})^{-1}$, which agrees well with the experimental values. There still remains, however, the need to explain the differences in slope for the three series of compounds with a range of $0.72 \text{ kJ}(\text{mole } \text{CH}_2 \text{ group})^{-1}$. A possible explanation of these differences involves small changes in the separation of the alkyl chains of the ammonium derivatives and those of the membrane lipids, with a change in the London-Van der Waals dispersion forces. Such small changes in near-neighbor separation of the alkyl chains could also affect the degree of unkinking necessary for chain insertion into the bilayer and be determined by the headgroup. London-Van der Waals dispersion energies are determined by a r^{-5} dependence (Salem, 1962), and, assuming an alkyl chain separation of approximately 5 \AA , differences of the order of $\pm 5\%$ would be sufficient to account for the differences of slope observed experimentally. One can conceive of such small changes in the hydrophobic packing of the binding site occurring with changes in the headgroup if the inhibitor interacts with both an anionic site and a hydrophobic pocket as indicated diagrammatically in Fig. 5 [compare the binding of fatty acids by serum albumin (Spector, 1975)].

The importance of the surface free-energy term in determining the effectiveness of inhibitors of the sodium pump is further illustrated for the isomeric butylammonium cations (Fig. 3a). Molecular areas and hence the ΔF_{cav} term are also seen to be related to the gas chromatographic retention times, taken from Littlewood (1970), for the isomeric butanols (Fig. 3b) for similar reasons.

The effect of temperature on hemolysis and inhibition of the sodium pump were quite different. Hemolysis by *n*-alkylammonium bromides showed no temperature dependence between 20 and 37°C for chain lengths of seven to twelve carbon atoms. The totally entropic nature of hemolysis within this range

is typical of many partition-based phenomena (Klein, 1979). Above $n_c = 12$ a complex effect was observed in which the relationship between $\log c_{50}$ and chain length showed a minimum, with longer chain lengths becoming less effective as the temperature was decreased.

Inhibition of the Na^+ -pump by tetradecylammonium bromide did not change significantly between 20 and 37°C . In contrast the *n*-heptyl derivative was markedly less inhibitory at 20 than at 37°C .

We admit to finding it difficult to explain satisfactorily the flattening off in the relationships shown in Figs. 1a-c and 2a-c, for chain lengths greater than C12-14. One possible explanation is that there is a physical limit to the length of alkyl chain, in the *trans* conformation, that could be accommodated within the ordered structure of the erythrocyte membrane without disrupting it. The kinking of very long alkyl chains (*t* \rightarrow *g*) which would be necessary, would impose a thermodynamic disadvantage which could offset the advantage of increasing chain length observed below $n_c = 12$. This limit could be expected to lie between chain lengths of 14 to 18 carbon atoms, i.e., half the bilayer thickness. Chain lengths greater than the limit might be expected to show a relative or absolute reduction of inhibitory potency based on this hypothesis. Unfortunately, derivatives with very long alkyl chains (greater than C20) were not available.

Some form of nonspecific uptake or binding to the erythrocyte membrane should be considered as another possible reason for this phenomenon. Although we have demonstrated binding/uptake of alkylammonium derivatives by red cells, this seems rather unlikely as an explanation for the abrupt change in slope since the concentration at which this occurs differs for hemolysis (10^{-4} M) and inhibition of the sodium pump ($1-3 \times 10^{-5} \text{ M}$), suggesting a more specific effect.

We thank Elisabeth Simonsen for excellent technical assistance. We should also like to thank particularly David Gruen for his guidance in the interpretation of the statistical mechanics of alkyl chain conformation and his help in calculating the conformational energy term. This work is supported by an M.R.C. Project Grant.

References

- Abe, A., Jernigan, R.L., Flory, P.J. 1966. Conformational energies of *n*-alkanes and the random configuration of higher homologs including polymethylene. *J. Am. Chem. Soc.* **88**:631
- Adam, N.K. 1941. The Physics and Chemistry of Surfaces. (3rd ed.) Oxford University Press, Oxford

Armstrong, C.M. 1971. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. *J. Gen. Physiol.* **58**:413

Armstrong, C.M., Binstock, L. 1965. Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride. *J. Gen. Physiol.* **48**:859

Armstrong, C.M., Hille, B. 1972. The inner quaternary ammonium ion receptor in potassium channels of the node of Ranvier. *J. Gen. Physiol.* **59**:388

Davies, J.T., Rideal, E.K. 1961. *Interfacial Phenomena*. p. 235. Academic Press, New York – London

Ellory, J.C., Simonsen, E., Klein, R.A. 1979. Inhibition of the sodium pump in human red cells by tetra alkyl ammonium derivatives. In: *The Sodium Pump*. P.L. Jørgensen, editor. Academic Press, New York – London

Finkelstein, M., Petersen, R.C., Ross, S.D. 1959. The electrochemical decomposition of quaternary ammonium salts. *J. Am. Chem. Soc.* **81**:2361

Flory, P.J. 1969. *Statistical mechanics of chain molecules*. John Wiley, New York

Glasstone, S. 1960. *Textbook of Physical Chemistry*. (2nd ed.) pp. 401, 1211. Macmillan, London

Grovenstein, E., Blanchard, E.P., Gordon, D.A., Stevenson, R.W. 1959. Carbanions. II. Cleavage of tetraalkylammonium halides by sodium in dioxane. *J. Am. Chem. Soc.* **81**:4842

Halicioglu, T., Sinanoglu, O. 1969. Solvent effects on cis-trans azobenzene isomerization: A detailed application of a theory of solvent effects on molecular association. *Ann. N.Y. Acad. Sci.* **158**:308

Hildebrand, J.H. 1979. Is there a "hydrophobic" effect? *Proc. Natl. Acad. Sci. USA* **76**:194

Horvath, C., Melander, W. 1978. Reversed-phase chromatography and the hydrophobic effect. *Int. Lab. Nov/Dec*: 11

Horvath, C., Melander, W., Molnar, I. 1977. Liquid chromatography of ionogenic substances with non-polar stationary phases. *Anal. Chem.* **49**:142

Klein, R.A. 1979. Gas chromatographic resolution of the optical enantiomers of a homologous series of 3-alkyl-serines (2-amino-3-alkyl-3-hydroxy-butanoic acids). *J. Chromatogr.* **170**:468

Kropp, D.L., Sachs, J.R. 1977. Kinetics of the inhibition of the Na-K pump by tetrapropylammonium chloride. *J. Physiol. (London)* **264**:471

Littlewood, A.B. 1970. *Gas Chromatography. Principles, techniques and applications*. p. 467. Academic Press, New York – London

Marsh, D., Smith, I.C.P. 1973. An interacting spin label study on the fluidizing and condensing effects of cholesterol on lecithin bilayers. *Biochim. Biophys. Acta* **298**:133

Mizushima, S-I., Okasaki, H. 1949. Equilibrium ratio of rotational isomers of *n*-pentane: With special reference to its difference from that of 1,2-dichloroethane. *J. Am. Chem. Soc.* **71**:3411

Moelwyn-Hughes, E.A. 1947. The kinetics of reaction in solution. (2nd ed.) p. 7. Clarendon Press, Oxford

Nelson, G.J. 1967a. Lipid composition of erythrocytes in various mammalian species. *Biochim. Biophys. Acta* **144**:221

Nelson, G.J. 1967b. Composition of neutral lipids from erythrocytes of common mammals. *J. Lipid Res.* **8**:374

Person, W.B., Pimentel, G.C. 1953. Thermodynamic properties and the characteristic CH₂ frequencies of *n*-paraffins. *J. Am. Chem. Soc.* **75**:532

Rojas, E., Rudy, B. 1976. Sodium conductance inactivation induced by quaternary ammonium compounds in squid giant axons in which the inactivation gate has been destroyed. *J. Physiol. (London)* **256**:123

Sachs, J.R., Conrad, M.E. 1968. Effect of tetraethylammonium on the active cation transport system of the red blood cell. *Am. J. Physiol.* **215**:795

Salem, L. 1962. The role of long-range forces in the cohesion of lipoproteins. *Can. J. Biochem. Physiol.* **40**:1287

Sallee, V.L. 1978. Fatty acid and alcohol partitioning with intestinal brush border and erythrocyte membranes. *J. Membrane Biol.* **43**:187

Sheppard, N., Szasz, G.J. 1949. Spectroscopic studies of rotational isomerism. III. The normal paraffins in the liquid and solid states. *J. Chem. Phys.* **17**:86

Shimsick, E.J., McConnell, H.M. 1973. Lateral phase separations in binary mixtures of cholesterol and phospholipids. *Biochem. Biophys. Res. Commun.* **53**:446

Sinanoglu, O. 1968. Solvent effects on molecular associations. In: *Molecular Associations in Biology*. B. Pullman, editor. p. 427 – 445. Academic Press, New York – London

Sinanoglu, O., Abdulnur, S. 1965. Effect of water and other solvents on the structure of biopolymers. *Fed. Proc.* **24**:512

Spector, A.A. 1975. Fatty acid binding to plasma albumin. *J. Lipid Res.* **16**:165

Tanford, C. 1973. *The hydrophobic effect: Formation of micelles and biological membranes*. John Wiley, New York – London

Tanford, C. 1979. Interfacial free energy and the hydrophobic effect. *Proc. Nat. Acad. Sci. USA* **76**:4175

Tasaki, I., Hagiwara, S. 1957. Demonstration of two stable potential states in the squid giant axon under tetraethylammonium chloride. *J. Gen. Physiol.* **40**:859

Vogel, A. 1959. *Textbook of Practical Organic Chemistry Including Qualitative Organic Analysis*. pp. 281 – 283. Longmans, London

Vogel, A. 1978. *Vogel's Practical Organic Chemistry Including Qualitative Organic Analysis*. Revised by B.S. Furniss, A.J. Hannaford, V. Rogers, P.G.W. Smith, and A.R. Tatchall. pp. 390 – 392. Longmans, London – New York

Received 26 July 1979; revised 28 January 1980